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strongly from one at the ends of the contact zone. Graphs of its change at the ends of 
the contact zone are given in Fig. 3 as a function of the magnitude of the zone and the 

thickness of the plate. 
Shown by dashes is the 

the change in reaction 

Fig. 2 Fig, 3 

The values of 211 la = 20, 60, 100 correspond to curves 1-3 . 
solution by Kirchhoff theory, but taking account of the nature of 

in the contact zone, obtained from (2.4). As we see, the true 

stresses in the contact zone differ insignificantly for thin plates from those obtained by 
Kirchhoff theory. 
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The problem of the vibrations of a rigid circular stamp on the surface of an ela- 

stic layer at rest on a rigid base is examined, There is no friction between the 

stamp and the layer, and between the layer and the base. The contact stresses 
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under the stamp and the elastic waves originating outside the stamp are studied. 

A method is proposed for solving these problems at all fundamental frequencies 
with the exception of some singular frequencies for which another approach is 
necessary. 

The method used is based on the reduction of boundary value problems to an 

integral equation of the first kind, which differs from the equations investigated 

in static problems by strong oscillation of the kernel as well as by its bounded 
growth at certain frequencies, This makes known methods of investigating inte- 
gral equations ineffective. The method proposed here, based on a special facto- 

rization of functions, permits overcoming the mentioned difficulties, 

1, Use of the principle of limit absorption [l] reduces the problem to the solutionof 
an integral equation of the following kind : 

a 

s 
k(r, ~)~~(p)~~=e~(~), OGr<a (1.2) 

0 

k(r, p) = la u,x,)J,(ur)J,(up)du, s=O, I,2 ,... (1.3) 
a 

K (u, x2) = [z&& ct h e2 - (u” - 11zx’.z)2 K1 cth %I-’ 

Ok = I/u” - Xk2, x12 = pdh2 (h + 2p.)-1, x22 = pcowp-’ 

8 = 4 $zbzO-~, a=Rih, b2 = pip 

Here Re q (r)e-‘-’ and Re u (r)e-iwf are contact stresses under the stamp and the 
characteristic of its shape and the character of insertion, respectively ; co, v, h, p are 
the stamp vibration frequency, Poisson’s ratio of the layer material and Lame constants, 
respectively ; h is the thickness of the elastic layer, and R is the radius of the stamp. 

A detailed study of the properties of the function K (u, x2) preceded the derivation 

8 

n 

4 3 

Fig. 1 

of (1. 1). Namely, the neutral curves 

of the function R and K-l,, whose 

graphs for v = 0.2 are presented in 

Fig. 1, were studied. The solid linesin 
Fig. 1 show the neutral curves (,L e. the 

zeros) of the function K-l (u, x2), while 

the dashes pertain to K (u, x,). 

The principle of limit absorption 
dictates the location of the contour u 
which should agree with the positive 

part of the real axis everywhere, except 
at segments containing real poles In 
the case zeros and poles of the function 
K (u, x2) alternate, the mentioned 
segments are bypassed by the contour 
from below, In Fig. 1 these are sections 
of values of the parameter X, for which 
the angle between the tangent to the 
solid curves and the x,-axis is acute. 
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The segments containing poles are bypassed from above if the mentioned angle is obtuse. 

This refers to the least pole which is in the interval 2 < xs < 3 in Fig. 1. Finally, in 
the case of multiple poles, the contour should intersect them. Such a position of the con- 

tour of integrations is established without special difficulty by using the principle of li- 
mit absorption and taking account of the analyticity of ~,‘as a function of the parameter 

x2. Namely, by imposing a small internal friction E on the system and using the Cauchy- 

kiemann relationship on the functions ~4 (x, + ie) = u1 -j- ius, we easily obtainthat 
the poles bypassed by the contour from below are shifted to the upper half-plane and 

those bypassed from above shift to the lower half-plane. 
The function K (u, x,) decreases as cu-r at infinity. 

To solve (1. l), let us represent its right side by a Bessel integral, which permits us to 

be limited to the case when the function J,(q, r), 9 > 0 is in the right side. The 
solution of the integral equation (I. 1) can be represented as follows for this right side : 

4n (4 = Js (71f) / K (rl) + S(r) in (1.3) 

Here ‘p is the solution of an equation of the form 

V-i-FP=D (1.4) 

The notation used has been introduced in [2] 

wm flf = q. (~,)I~l(~l) + fw,)l i (h2 - ~12K M 
R,(t) = US+1 (ita)l,‘(ita) - t, Rs(t) = tK,+,(ita)K8-“(ita) - t 

The result of [2] is obtained as a particular case from the representation (1. 3)- (1. 5) 
if (1.4) is solved by successive approximations. The validity of this representation can 

be confirmed by direct substitution into (1. 1). 
The main difficulty in effective utilization of this representation is related to the need 

for factorization of the function K (u, xs) relative to the contour o [33 . To overcome 
this difficulty, let us perform an approximate factorization by using the approximating 

function H (u) selected from the following condition: 

1 K (u, %> - If 04 1 I f fir @, %> I c 8 

In this case, it can be shown exactly as in [4] that for sufficiently small a the close- 
ness of the solutions will hold in some uniform metric, The approximation is carriedout 
according to the following scheme : let Xi and pj be positive zeros and poles, respectively, 

while Z, are complex zeros of the function 



Wave excitation in a layer by a vibrating stamp 851 

K (u, x3, i = 1, 2, . . . n, j =: 2, 2, . . . p. 

Let us form the function 

which has no real zeros and poles 
The selection of B will be mentioned later ; & (u) - C as u -+ 00: C # 0, 

For uniqueness of the function R (u) let us draw a slit from Bi to f ioo and from 
-Bi to -ioo and let us fix the branch by the condition f/1712 = B > 0. Let us 
make the substitution z = u2 / (u2 + Ma) which transfers (0, 00) to (0.i) and let 
us approximate the function R (Mvzr / (1 - z)) by the Bemshtein polynomials B,(x) 
on the segment (0.1) (the selection of the parameter M influences the accuracy of the 
approximation substantially). We obtain n P 

P--n 

JJ (u2--%% P>n 
s=1 

1, p=n 

The function H (u) has 2k complex zeros determined by the Bemshtein polynomial, 
which are symmetric relative to all axes, &z simple real zeros & x, and p - n 
simple complex zeros for p > n. The poles of the function Ii (u) are exhausted by 
two k-tuples -& &Ii and 2p real & ps. Moreover, among the singularities of the f&c- 
tion H (u) are two branch points + iB. 

Henceforth, the real zeros and poles are numbered first in order of growth of the mo- 
duli, and then all the rest are numbered. 

2, By constructing the approximating function we can construct an approximate so- 
lution of the problem. To this end, let us drop the contours I’,, T2, JJs in (1,4),( 1.5) 
down to the branch point - iB. The zeros and Poles of the integrand will hence inter- 
sect, According to residue theory, the functions F (a, z>rP and D (z) change form and 
can be represented as n 

F (a, z) cp = B, + q,, D(t) = Dp (t) -!- ~p’r B, = r: fi (4 cp(- 2,) (2.1) 
a=4 
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For sufficiently large B the influence of the integral terms in the last relationships 

is slight and they can be neglected. Consequently, to determine the function fp (t) it is 

sufficient to know its value at the points --zk, K (zk) = 0. These values are deter- 

mined from the solution of a finite linear system of algebraic equations of the follow- 

ing kind: n 

2 fjfl f- 26) + S,J (p (- 2,) = D, (- Zi)’ i = 1, 2, . . ‘ n (2.2) 

s=1 

For sufficiently large IZ, which will hold for large B,, this system turns out to be sol- 

vable uniquely. Having determined cp (-2 ) _, , we find an approximate representation 

of the solution in the inner contact domain and the wave field sufficiently far from the 

stamp boundary in the form 

Qn (P) = 0 [~ + jj ~~~~~~~~~~~~!~~~j~ ] (2.3) 

m 

(2.4) 

u (r, t) = Re e-iof A,@,“’ @PA + 5 Ad& (- +Pk)] 9 r>a (2.5) 
%Pfl 

Ck = Res UK(U) 
U’--Pk 

The first sum is the wave field in the far zone while the second (which damps exponen- 
tially as r + co) corrects it during approach to the stamp. 

As an illustration,let us consider the case of a plane stamp. The equation for the 
problem of a plane stamp is a particular case of (1.1) with right side in the form of the 
Bessel function cz J, (nr) for 11 = O, where a is the depth of insertion of the stamp 

,I 

“I (p) = ‘& B” -+- 2 &I,, (- i”kpf 
I 

(2961 
k--l 

Bo = K-'(O), Bk = 
cp (-- Zk) 

IO (- iZk”) K+’ (-z*) 
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The wave field outside the stamp is representable as 

u (p, t) = aRe emio’ i *4jHF) (Pip) (2.7) 
j=l 

Let us consider the case v = 0.2, a = 1, ~~2 = 11. In this case the function K ( ZL) has 

the poles pi = 0.4984, p2 = 2.004, ps = 3.393 and the zeros z1 = 2.031, z2 = 1.063 

on the real semi-axis. For the approximation M2 = 110, B = 15, zg = 2.397 i. The 
error will not exceed 6% for approximation by a fourth degree polynomial. 

Formulas (2.6) and (2.7) permit computation of the stresses under the stamp in a do- 

main not adjoining its edge. Upon approaching the edge of the stamp, the stresses grow 

as (r - a)-‘/~ and this singularity can easily be isolated by using the method [5], for 

example, 

Waves on the layer surface in the far zone are computed by means of (2.7). To com- 
pute the field in the nearest zone it is necessary to use (2.5); this formula can describe 

the wave field in a zone arbitrarily near to the stamp because the parameter B increases. 
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The problem of optimizing the frequencies of an elastic plate vibrating in an 
ideal fluid is investigated. A formulation of the appropriate hydroelasticity prob- 
lem is presented. The “external” hydrodynamic problem is solved by methods 
of complex variable function theory and the forces exerted by the fluid on the 
plate are determined. An integro-differential equation describing one-dimensi- 


